

Latency reduction with compression-aware training for

efficient distributed computing of Convolution Neural

Networks

Xiangzhou Sun

The Webb Schools, Claremont, United States

jonas.sun2020@gmail.com

Abstract. To decrease workload on lightweight devices, this project accelerates the computation

of Convolution Neural Networks (CNNs) and preserves accuracy through modifying the CNNs’

training process. First, this research implements distributed computing to optimally divide the

network workload onto both devices and the cloud. To reduce communication latency between

devices and the cloud, this research introduces feature pruning by setting elements in the

communicated feature to 0. However, naively pruning the feature causes a significant accuracy

drop. To compensate for this limitation, this research applies pruning-aware training to preserve

the CNNs’ task performance. This research evaluates the proposed methods on multiple datasets

and CNN models, like VGG-11 and ResNet-18 with PyTorch. Empirical results demonstrate that

the methods can reduce the computational latency by 50-75% with a negligible 1% accuracy loss.

Specifically, this research first identifies the system bottleneck by comparing on-device, on-

cloud, and communication latencies (on-device: 14.8%, on-cloud: 1.7%, communication:

83.5%). Then, this research compares multiple pruning strategies and observe the superiority of

magnitude-based pruning. At 0.992 sparsity, magnitude-based pruning outperforms other

strategies by 45% in accuracy. Finally, this research verifies the effectiveness of the proposed

pruning-aware training method by comparing it with the baseline at various splitting points and

networks. Pruning-aware training decreases the accuracy loss by up to 26% at 0.998 sparsity. In

conclusion, even though distributed computing accelerates applications on lightweight devices,

compressing the communication cost is crucial and challenging. This research proposed methods

effectively reduce communication latency without sacrificing accuracy, conserving the

effectiveness of CNN.

Keywords: Convolution Neural Network (CNN), Distributed Computing, Pruning,

Compression-aware Training.

1. Introduction

As technology continues to evolve in contemporary society, more portable devices like phones, laptops,

Virtual Reality (VR) headsets, and intelligent glasses support computer vision AI applications. As

described in Unity virtual reality projects, VR devices provide an immersive experience for users

through applications such as object detection, gaze tracking, and movement recognition, which are all

essential functionalities for realistic displays or entertainment [1]. Other researches also investigate

CNN, the status quo of computer vision problems, in mobile devices for object of face recognition [2].

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1

However, these applications usually require machine learning to improve performance and adapt to

personalized changes. For example, to simulate driving, lightweight devices use CNN to detect hand

gestures, allowing users to practice steering vehicles without injuries or consequences [3].

According to Artificial neural networks, most modern computer vision machine learning techniques

are based on CNN such as VGG or ResNet [4]. Despite the impressive performance of CNNs, they

require expensive and time-consuming computations and considerable memory consumption. However,

most mobile devices have constrained computation and memory resources to reduce the product weight,

size, and price [5]. While keeping the device lightweight decreases the performance of neural networks,

incorporating more hardware to improve latency will result in a hefty device, which worsens the user

experience. This problem is significant and relevant, because on-device latency will inevitably obstruct

the advancement of realism and quality in portable devices.

Figure 1. Illustration of the distributed computing paradigm.

In distributed computing, a neural network is split into a head model (on-device part) and a tail model

(on-cloud part). The intermediate shared feature from the head model is transmitted via wire/wireless

connection from devices to the cloud.

Under this context, this research proposes using a compression-aware distributed computing model

to reduce latency on CNNs of portable devices, and this research question is: in terms of latency and

accuracy, how effective is this compression-aware distributed computing model for Convolution Neural

Networks?

 This framework splits the neural network workload on both mobile devices and the centralized cloud

with distributed computing [6]. Neural networks consist of layers of neurons that take the input of the

previous layer to produce output for the following layer. Thus, neural network computations are

dividable into intermediate features as long as the layers are connected through inputs and outputs.

Instead of completing the calculations solely on the device or the cloud, this research optimizes the

overall system efficiency by leveraging local and cloud computing with the ideal split point in the neural

network:

 [𝑡𝑜𝑡𝑎𝑙𝑙 = 𝑐𝑙𝑜𝑢𝑑𝑙 + 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑙 + 𝑑𝑒𝑣𝑖𝑐𝑒𝑙] (1)

While computing more layers on the head-mounted device cause heating and speed issues, more

layer computation on the cloud increases the cost of feature communication. Existing work employs

exhaustive searching across layers in a deep neural network to locate the optimal splitting point in terms

of accuracy and overall efficiency [7]. One limitation of this method is the high data communication

cost, which this research can reduce via compression.

In this work, this research demonstrates that it can compress the communicated data by pruning

elements in the feature. Pruning reduces the data communication cost by converting elements in the

intermediate feature to zero. However, directly pruning the data causes the task accuracy to drop

significantly because, during the pruning process, pruning removed weight connections in the network

to decrease the model size and introduced information loss.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

2

This research resolves this issue by implementing pruning-aware training, which includes pruning in

the network training process. Gradually, the neural network becomes accustomed to the compression

and reacts accordingly, improving the final network accuracy. Therefore, this research implements the

pruning in both the testing and training phases.

Figure 2. Pipeline of magnitude-based feature pruning for reduced communication volume.

Given a share feature, this research first calculates the pruning threshold for a specific target sparsity.

Then, this research prunes the feature by comparing magnitude of elements in the feature with the

threshold. If one element’s magnitude is smaller than the threshold, this research sets it to zero.

Otherwise, this research preserves its value. After the above process, this research only transmits the

pruned feature to the cloud. As a result, this research decreases communicated volume and cost

significantly by pruning, as only a small percentage of non-zero elements and their coordinates will be

transmitted.

Also, instead of randomly removing weights, this method rounds smaller numbers in the intermediate

feature to zero, efficiently decreasing the amount of data communication while maintaining sufficient

levels of accuracy. Even though this research observes this method to reduce the neural networks

precision slightly, its latency improvement and data communication reduction are significant.

2. Related Work

In order to optimize system level efficiency, others proposed distributed computing to split the machine

learning workload onto both edge devices and the cloud.

For instance, Kang proposed the Neurosurgeon method [7]. The Neurosurgeon system exhaustively

searches through all the possible splitting points in a DNN and locates the optimal layer by profiling.

This system adapts to various DNN architectures and hardware platforms, reducing latency by 3.1 × on

average and energy consumption by 59.4%. However, they did not compress the communicated data to

reduce communication latency, a bottleneck in the overall latency.

Another study conducted by Matsubara utilizes edge computing and network distillation to minimize

the computational complexity of neural networks [8]. Their method first divides complicated DNNs into

a head and tail model to run on both the device and the cloud. The head model is then “shrunk” with

network distillation, a state-of-the-art technique that trains simpler “student” models to approximate the

output of more complicated “teacher” models. The distillation is beneficial in model complexity

reduction while maintaining stable performance and preventing overfitting. Compared to splitting

without network distillation, their method reduces bandwidth by 98% and computation load by 85%.

However, neural distillation introduces accuracy loss after replacing complicated networks with smaller,

simpler ones. The “student” models are also computationally costly and time-consuming to train and

test.

In addition, a survey explores research challenges and applications of recent studies concerning the

distributed computing of deep neural networks [9]. Matsubara compares it against model compression

and neural distillation on various Computer Vision (CV) and Natural Language Processing (NLP) tasks.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

3

3. Methodology

3.1. Method 1: Distributed Computation with optimal layer split point

Given a neural network of N layers, this research wishes to locate the optimal splitting point that

minimizes overall latency. The overall latency consists of three parts: on-device computational latency,

communication latency, and on-cloud computational latency. If all neural network layers compute on-

cloud, the data communication size will be the same as the size of the raw input. However, if all neural

network layers compute on-device, the communication latency will be zero while the latency of

computation on-device would increase. Therefore, the position of the split point will impact the three

latencies simultaneously.

In this work, this research aims to balance the three latencies by pinpointing the split location. This

method optimally distributes the computation to the device and cloud, resulting in latency reduction and

communication savings.

First, for an arbitrary split point, this research profiles the overall latency, which consists of on-device,

communication, and on-cloud latency. Then, this research selects the optimal split point among all

possible layers according to their profiled overall latency. After the optimal split point selection, this

research computes the first part of the network workload on the device and transfer the shared feature

to the cloud via the internet.

3.2. Method 2: Pruning shared feature according to magnitude for communication saving

After offloading part of the computation from the device to the cloud, this research aims to find the

bottleneck of this framework by calculating and comparing the latency of each:

 [𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘𝑙 = 𝑚𝑎𝑥{𝑐𝑙𝑜𝑢𝑑𝑙 , 𝑐𝑜𝑚𝑚𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛𝑙 , 𝑑𝑒𝑣𝑖𝑐𝑒𝑙] (2)

The bottleneck to distributed computing is data communication. Even though the size of the shared

feature is smaller than the raw input, feature communication still contributes to a considerable portion

of the overall latency. In this work, this research aims to prune the shared feature from the device

according to the magnitude of each element in the shared feature. This method minimizes accuracy

degradation while significantly reducing communication size between the device and the cloud.

Since the elements with zero values are skipped while transferring data, pruning reduces

communication size by setting shared feature values to zero. First, this research obtains the shared

feature by computing the first part of the neural network on the device. Then, this research applies the

method to prune the feature for communication savings. During the pruning, this research arbitrarily

determines a sparsity s, which specifies the percentage of zero elements in the feature tensor. For

example, in a shared feature with 10000 elements, a 90% sparsity decreases data size to 1000, which is

10% percent of its original size:

 [𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑙 = 𝑐𝑙𝑜𝑢𝑑𝑙 + 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑙 × 𝑠 + 𝑑𝑒𝑣𝑖𝑐𝑒𝑙 , 0 < 𝑠 < 1] (3)

After determining a desired sparsity, this research calculates the pruning threshold t for the feature

by sorting them according to their magnitude. Any element value less than the pruning threshold will be

set to zero, while any element greater than the threshold remains unchanged. For a given element x in

feature n, the pruning 𝑓(𝑥𝑛) can be expressed as:

 𝑓(𝑥𝑛) = {
0, 𝑥𝑛 < 𝑡,

𝑥𝑛, 𝑥𝑛 >= 𝑡
 (4)

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

4

Python code for Pruning by random:

def set_zero_randomly(inp, target_sparsity):

 current_sparsity = get_sparsity(inp)

 if current_sparsity >= target_sparsity:

 return inp

 else:

 # if element is 0 mask is 0

 zero_mask = (inp != 0).float()

 # generate uniform distribution

 random_mask = torch.rand_like(inp)

 real_mask = zero_mask * random_mask

 inp_flatten = real_mask.flatten(start_dim=0)

 kth_value = torch.topk(inp_flatten.abs(), int((1 -

 target_sparsity) *inp.numel()), largest=True).values[-1]

 mask = real_mask.abs() >= kth_value

 return mask.float() * inp

Python code for Magnitude-based Pruning:

def set_zero_magnitude(inp, target_sparsity):

 current_sparsity = get_sparsity(inp)

 if current_sparsity >= target_sparsity:

 return inp

 else:

 inp_flatten = inp.flatten(start_dim=0)

 kth_value = torch.topk(inp_flatten.abs(), int((1 -

 target_sparsity) *inp.numel()), largest=True).values[-1]

 mask = inp.abs() >= kth_value

 return mask.float() * inp

3.3. Comparison between Pruning by random and Magnitude-based Pruning

Multiple pruning algorithms decrease communication sizes, such as random or magnitude-based

pruning. To determine the optimal method for pruning, this research compares the two algorithms based

on accuracy and efficiency.

Theoretically, this research concludes that pruning the shared feature based on magnitude is more

effective than other methods, such as pruning randomly. By pruning according to the elements’ values,

the neurons with the smallest values will be converted to 0. As they are the values closest to 0, their

changes will be minimal compared to converting greater values. If this research randomly prunes the

data in the shared feature, it may accidentally convert substantial elements to 0, while smaller values

remain unchanged. Therefore, pruning through magnitude generally causes a less significant change in

the shared feature than pruning randomly, which improves accuracy effectively.

To demonstrate magnitude-based pruning’s effectiveness, this research conducts empirical

experiments to compare the two methods. This research implements the two pruning methods on

identical models and shared features. The method with higher accuracy is the more optimal one.

Even though pruning reduces latency significantly, removing elements in the shared feature causes

the cloud-side neural network to receive less accurate data. If the sparsity is overly high, the testing

accuracy of the network will drop notably due to an overwhelming information loss introduced by

pruning.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

5

3.4. Method 3: Pruning-aware training to improve accuracy

A prominent issue in Method 2 is that, during inference, the unexpected information loss introduced by

pruning causes a notable accuracy drop. Since the shared feature of the neural network is not compressed

during training, the network cannot anticipate this information loss and, therefore, cannot adapt

accordingly. To minimize the effects of pruning, this research implements pruning-aware training to

improve the accuracy of this distributed computing framework.

The pruning-aware training method applies pruning to both the training and inference phases.

Consequently, the neural network can adapt to information loss introduced by pruning and adjust its

weights accordingly during training via stochastic gradient descent.

For instance, some elements in the shared feature are essential in an accurate prediction for the on-

cloud network. If pruning accidentally prunes these notable elements, an accuracy drop is inevitable due

to unexpected information loss. However, with pruning-aware training, the network learns to reduce

dependency on elements that will be pruned and emphasize other un-pruned elements to produce correct

predictions. Therefore, pruning-aware training better prepares the neural network for computing

accurate outputs amid the influence of compression.

Figure 3. Comparison between pruning-aware training (right) and baseline method (left).

During model training, the baseline method (top left) demonstrates a higher accuracy than this

method (top right). However, during inference (actual usage), the baseline method (bottom left) presents

significantly lower accuracy than this method (bottom right).

Figure3 explains why pruning-aware training results in higher accuracy than the baseline method

during inference. Even though the baseline method may obtain a higher accuracy during training

(93.87%), the accuracy plummets when evaluating the test dataset (63.95%) due to unexpected

information loss. However, the training and testing accuracy for pruning-aware training are less varied

and more consistent (90.73% and 89.88%), as the network senses and adjusts to the compression of the

shared feature. Therefore, pruning-aware training notably increases accuracy and produces a more

practical neural network.

4. Hypothesis

First, according to the neurosurgeon method proposed by Kang in related works, distributed computing

effectively reduces latency in multiple DNN architectures [8]. Therefore, this research hypothesizes that

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

6

the compression-aware distributed computing model, which applies a similar framework to other

convolutional neural networks on AR/VR systems, will yield a similar result in reducing latency.

Also, according to previous work on structural pruning and particle filtering, a pruned network can

preserve some of its original accuracies through retraining [10]. Even though this work emphasized the

pruning of the network weights on multiple layers, it may also imply that retraining a network with

pruning at one shared feature in a distributed computing model can also preserve a certain degree of

accuracy. Thus, this research predicts the pruning-aware training method to minimize accuracy

degradation.

5. Experiments

5.1. Setup

This research uses the VGG-11 [11] and ResNet-18 models [12]. This research conducts the experiments

with PyTorch version 1.13.1 on the NVIDIA A100-SXM4-40GB GPU provided by Google

Colaboratory [13]. This research conducts each experiment with 3 trials and took the average of the

values to complete the graphs.

5.2. Experiment 1: Identifying the bottleneck of overall latency.

For distributed computing of neural networks on VR systems, this research aims to minimize overall

latency, which consists of on-device latency, communication latency, and on-cloud latency. To

effectively reduce the overall latency, this research first identifies the bottleneck of the system, the most

time-consuming part of overall latency, by calculating on-device, communication, and on-cloud latency

individually.

In this experiment, this research assumes the computation power of the on-device system to be 125

GOPs (Giga Operations Per Second). This research also determines that the cloud equips a more capable

GPU and thus has a five times higher computation power (625 GOPs) than the devices’. In addition, this

research measures the total computation amount for both devices and the cloud by counting the multiply-

accumulate (MAC) unit. A MAC unit contains one multiplication and accumulation.

This research sets the data communication bandwidth as 300Mb per second according to the 5th

generation mobile network (5G) [14].

With the previous setup, this research calculates communication latency, on-device latency, and on-

cloud latency. As shown in Figure 4, the results demonstrate that communication latency is the

bottleneck of distributed computing. Without compressing the data, the communication latency

contributes to 54.0% of the overall latency. However, if this research compresses the data with a sparsity

of 0.9, it decreases the communication latency to 10.5% of the overall latency. This result demonstrates

that data compression is necessary and beneficial to distributed computing.

Splitting at the 17th instead of the 13th manifests similar results. Without compressing the shared

feature, the communication latency is 83.5% of the overall latency. After compression with 0.9 sparsity,

the communication latency reduces to only 33.5% of the overall latency.

Therefore, this research concludes that the bottleneck of distributed computing is communication

latency, and compression effectively mitigates this problem.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

7

Figure 4. The three latencies of the distributed computing model.

The pie charts display data communication as the bottleneck of the overall latency through comparing

the three latencies of the distributed computing model. This research also demonstrates how

compressing the data significantly reduces this latency. VGG-11 Network as example: For the 13th (top

2 charts) and 17th (bottom 2 charts) layer, this research calculates the percentage of communication

latency (blue), on-device latency (red), and on-cloud (yellow) in the overall latency. Pie charts on the

left: Without compression. Pie charts on the right: With 0.9 (90%).

5.3. Experiment 2: Comparing pruning algorithms in terms of accuracy.

After identifying data communication as the bottleneck of the distributed computing framework, this

research decided to prune the shared feature at the split layer to decrease the shared feature size. There

are several algorithms for pruning, including random pruning and magnitude-based pruning. The

research compares the two distinct algorithms under various sparsity levels ranging from 0.9 to 0.9996.

This research tests two different splitting points (13th and 17th layers) in the VGG-11 network and

present the result in Figure 5.

Figure 5. Random pruning and magnitude-based pruning.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

8

Accuracy comparison between the two pruning algorithms: Random pruning and magnitude-based

pruning. The orange and red line represent magnitude-based pruning for the 13th and 17th layer. The

dark and light blue line represent random pruning for the 13th and 17th layer.

At 0.9 sparsity, both pruning methods demonstrate a similar accuracy, at approximately 92.5%,

comparable to the accuracy without compression.

As the sparsity increases, the accuracy of the random pruning method begins to reduce, dropping to

around 40%. On the other hand, the magnitude-based pruning method’s accuracy decreases slightly by

10%. When this research continues to increase the sparsity from 99.2%, the accuracy of random pruning

declines further to around 10-15% at 0.9996 sparsity. However, magnitude-based pruning maintains the

accuracy at 69%, almost 50% higher than random pruning at the same layer. As this research continues

to increase the sparsity, random pruning’s accuracy decreases more rapidly from 0.96 sparsity, dropping

to around 40% at 0.992 sparsity. On the other hand, magnitude-based pruning declines slowly by less

than 10% at the same sparsity level.

Results of random pruning and magnitude-based pruning at the 17th layer produce a similar pattern.

At sparsity 0.9, both pruning algorithms yield identical accuracy at around 92%. After sparsity increase,

the accuracy for random pruning drops to 70% while magnitude-based pruning remains at around 90%.

As the sparsity continues to increase, the accuracy of random pruning drops to approximately 28%

accuracy at 0.998, while magnitude-based pruning maintains an accuracy of 73%. Therefore, this

research concludes that magnitude-based pruning achieves a higher accuracy than random pruning.

5.4. Experiment 3: Comparing baseline method with pruning-aware training in terms of accuracy

After deciding the optimal pruning algorithm in Experiment 2, this research improves the accuracy of

the network further through pruning-aware training, as discussed in Sec.3.4.

In this experiment, this research compares the accuracy of the baseline method without pruning-

aware training with the framework. The setup implemented in this experiment is identical to previous

experiments.

Figure 6. Comparison between the baseline method without pruning-aware training and the method

with pruning- aware training.

The baseline method is represented with dotted lines, while the pruning-aware training is represented

with normal lines.

As shown in Figure 6, baseline and pruning-aware training methods have a similar testing accuracy

at low sparsity (0.9-0.96). As the sparsity increases from 0.96 to 0.995, this research observes the

baseline method of both layers to reduce in accuracy, dropping from 92% to around 89%. However, the

pruning-aware training maintains a high accuracy at around 92%.

When sparsity increases to 0.9996, the accuracy of the baseline method plummets to around 36%. At

the same sparsity, the accuracy for the pruning-aware training method remains at 83%, almost a 50%

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

9

increase from the baseline method. This research observes a similar trend with the model split at the

17th layer.

In conclusion, the baseline method and pruning-aware training both yield high accuracy at low

sparsity. However, when sparsity increases, pruning-aware training sustains a high accuracy, while the

accuracy of the baseline method reduces significantly. Therefore, the pruning-aware training method is

superior to the baseline method.

5.5. Experiment 4: Comparing overall latency reduction in terms of accuracy and latency

In the previous experiments, this research concluded that magnitude-based pruning and pruning-aware

training are effective methods for compressing the shared feature and minimizing accuracy loss. In this

experiment, this research compares the uncompressed network with the compressed network by

calculating the overall latency and accuracy.

Figure 7. Comparing baseline distributed computing with this method that compressed the shared

feature by 90%.

In Figure 7, the arrows signify the decrease in overall latency (blue) and accuracy (red).

This research takes the results from Experiment 1 for the overall latency for the uncompressed

method. For the compressed model, this research sets the sparsity to 90%. As shown in Figure 7, the

overall latency of the uncompressed model is 3.23ms, and the accuracy is 92.89%. When this research

applies compression to the model, the overall latency is reduced significantly by 1.57ms (48% decrease),

while the accuracy only declined slightly by 0.37%, an almost negligible amount. The results

demonstrate that this method drastically reduces overall latency with a notably less trade-off of accuracy.

This research observes the benefit of this proposed compression to be more pronounced when

applying compression at the 17th layer’s output feature. The overall latency reduces by 7.87ms of the

original 10.47ms, almost a 75% decrease. Meanwhile, the accuracy only drops slightly by 0.42%. With

a negligible decline in accuracy, this research considerably lowers the overall latency.

5.6. Experiment 5: Generalization to other CNN architectures

To validate the generalizability of the proposed compression method on different networks, this research

further applies the pruning-aware training method to other neural architectures, such as ResNet-18.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

10

In this experiment, this research reproduces the settings of Experiment 3 and compare the baseline

method with this pruning-aware training method on ResNet-18 instead of VGG-11.

Figure 8. Comparison between the baseline method without pruning-aware training and the method

with pruning-aware training using ResNet-18.

The baseline method is represented with dotted lines while the pruning-aware training is represented

with normal lines.

As demonstrated in Figure 8, this research observes a similar trend as Experiment 3, validating the

generalizability of this methods. As the sparsity increases, the pruning-aware training method preserves

the accuracy, while the accuracy of the baseline method drops significantly. For example, at a sparsity

of 0.992, the baseline method’s accuracy reduces to 25.25%. In comparison, pruning-aware training

yields an accuracy of 94.12%, considerably higher than the baseline method’s accuracy. At 0.9996

sparsity, the baseline method’s accuracy is merely 12.03% in contrast to the 87.48% of the pruning-

aware training method. At all sparsity levels, the pruning-aware training method is superior to the

baseline method in terms of accuracy.

This research notices a similar pattern when it distributed the network at different blocks of ResNet-

18. For example, when this research splits the network at the 3rd block instead of the 4th, the pruning-

aware training method is also more effective than the baseline method.

5.7. Results Analysis

This research’s results are similar with a study that investigated compression-aware training with the

Frank-Wolfe algorithm in neural networks [15]. By applying low-rank decompositions on convolutional

layers and pruning convolutional filters, their study decreases parameters in neural networks and

preserves accuracy through compression-aware training. At a sparsity of 0.98, their compression-aware

training on unstructured weight pruning led to only a slight accuracy decrease. Similarly, the pruning-

aware training also only lost about 0.28% of accuracy at a 0.98 sparsity, which is a similar outcome.

Since this research conducted the experiment through a well-established platform and with a fixed

dataset for training and testing, the results are mostly consistent and accurate. However, possible sources

of variability include the randomization of data during training and the weights pruned during random

pruning.

When training the neural network, this research enabled the “shuffle” option for each batch of data.

This can effectively prevent over-fitting. The random factor in “shuffle” causes the final accuracy of the

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

11

network to change slightly with every trial. However, this source of variability is insignificant compared

to the overall trend.

Also, when pruning weights randomly in one of the experiments that tested different pruning

algorithms, the randomness also caused accuracy to vary. For example, if the method accidentally

pruned more significant elements in the shared feature, the final accuracy obviously decreases.

An example of bias in the experiments may be the non-linear increment of sparsity to display the

effectiveness of pruning-aware training and magnitude-based pruning. For example, instead of

increasing the sparsity in a linear fashion, this research augmented it with smaller values as the sparsity

approaches 1, similar to a power or exponential function. Even though this method of displaying data

demonstrates the effects of this methods optimally, the fixed intervals between each value may perplex

audiences and misguide them of the trend in a linear sparsity representation.

6. Conclusions

Conventionally, neural networks in portable devices compute either on-cloud or on-device. In this work,

it introduces a distributed computing method for optimal neural network workload distribution in

lightweight devices. In the results, this research demonstrates that the bottleneck of this model’s overall

latency lies in data communication. Motivated by the above observation, this research investigates the

trade-off between the neural network’s accuracy degradation and the pruning rate of the shared feature.

After comparing multiple pruning methods, this research concludes that magnitude-based pruning

compresses the data with minimal loss of accuracy. For the neural network to adapt to the pruning, this

research also applies the pruning-aware training method, which incorporates compression during the

training for higher testing accuracy. This research also tests this method on different layers and with

multiple neural networks, such as VGG-11 and ResNet-18, to prove the effectiveness of pruning-aware

training on all neural architectures.

As a result, this research verified the hypothesis and developed the compression-aware distributed

computing model, a system that utilizes the pruning and the distributed computing model to significantly

decrease the size of transferred data while sustaining sufficient accuracy. The system accommodates all

VR devices and effectively reduces their workload, allowing the device to become lightweight and

energy-efficient. At a sparsity of 0.995, this research reduces the communication size by 99.5% yet only

sacrifice less than 1% of accuracy on average. At the same sparsity, the baseline method without

pruning-aware training suffers from more than 45% accuracy degradation on average. Overall, with an

accuracy drop of less than 0.5%, this method can decrease the overall latency by 48% and up to 75%,

depending on the location of the split point.

Acknowledgements

I express my wholehearted gratefulness to all individuals who supported and assisted me in this research

or experimental process of this project.

First, I immensely appreciate the counsel of my supervising and computer science teacher, Ms.

Suarez, who taught me numerous important concepts with the internet and always believed in this project.

Her selfless education inspired many of this research innovations, allowing me to achieve this results

today.

Next, I acknowledge science department chair Ms. Nacionales and science teacher Dr. Martin for

their constant guidance and motivation to this research. Many thanks to my school, the Webb Schools,

for providing me the opportunity to study and pursuit my interests in the Science Research Lab afternoon

activity, where I obtained invaluable experiences with classmates and teachers. Finally, my greatest

gratitude for all the personal support along the way, including my relatives, friends, and classmates, who

all drove me to finish this difficult research.

References

[1] Linowes, J. (2015). Unity virtual reality projects. Packt Publishing Ltd.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

12

[2] Yanai, K., Tanno, R., and Okamoto, K. (2016). Efficient mobile implementation of a cnn-based

object recognition system. In Proceedings of the 24th ACM international conference on

Multimedia, pages 362– 366.

[3] Xu, D. (2006).A neural network approach for hand gesturere cognition in virtual reality driving

training system of spg. In 18th International Conference on Pattern Recognition (ICPR’06),

volume 3, pages 519– 522. IEEE.

[4] Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.

[5] Ponomarev, E., Matveev, S., Oseledets, I., and Glukhov, V. (2021). Latency estimation tool and

inves- tigation of neural networks inference on mobile gpu. Computers, 10(8):104.

[6] Bertsekas, D. and Tsitsiklis, J. (2015). Parallel and distributed computation: numerical methods.

Athena Scientific.

[7] Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang, L. (2017).

Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH

Computer Architecture News, 45(1):615–629.

[8] Matsubara, Y., Baidya, S., Callegaro, D., Levorato, M., and Singh, S. (2019). Distilled split deep

neural networks for edge-assisted real-time systems. In Proceedings of the 2019 Workshop on

Hot Topics in Video Analytics and Intelligent Edges, pages 21–26.

[9] Matsubara, Y., Levorato, M., and Restuccia, F. (2021). Split computing and early exiting for deep

learning applications: Survey and research challenges. ACM Computing Surveys (CSUR).

[10] Anwar, S., Hwang, K., and Sung, W. (2017). Structured pruning of deep convolutional neural

networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):1–

18.

[11] Simonyan, K. and Zisserman, A. (2014).Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

[12] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Pro- ceedings of the IEEE conference on computer vision and pattern recognition, pages 770–

778.

[13] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep

learning library. Advances in neural information processing systems, 32.

[14] Wisely, D., Wang, N., and Tafazolli, R. (2018). Capacity and costs for 5g networks in dense urban

areas. IET Communications, 12(19):2502–2510.

[15] Zimmer, M., Spiegel, C., and Pokutta, S. (2022). Compression-aware training of neural networks

using frank-wolfe. arXiv preprint arXiv:2205.11921.

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/46/20241043

13

