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Abstract. As Internet technology continues to evolve, recommender systems have become an 

integral part of daily life. However, traditional methods are increasingly falling short of meeting 

evolving user expectations. Utilizing survey data from the MovieLens dataset, a comparative 

approach was employed to investigate the efficacy, performance, and applicability of the UCB 

(Upper Confidence Bound) algorithm in addressing the multi-armed bandit problem. The study 

reveals that the UCB algorithm significantly impacts the cumulative regret value, indicating its 

robust performance in the multi-armed bandit setting. Furthermore, LinUCB—an enhanced 

version of the UCB algorithm—exhibits exceptional overall performance. The algorithm's 

efficiency is not just limited to the regret value but extends to handling high-dimensional feature 

spaces and delivering personalized recommendations. Unlike traditional UCB algorithms, 

LinUCB adapts more fluidly to high-dimensional environments by leveraging a linear model to 

simulate the reward function associated with each arm. This adaptability makes LinUCB 

particularly effective for complex, feature-rich recommendation scenarios. The performance of 

the UCB algorithm is also contingent upon parameter selection, making this an important factor 

to consider in practical implementations. Overall, both UCB and its modified version, LinUCB, 

present compelling solutions for the challenges faced by modern recommender systems. 

Keywords: Recommendation algorithms, Multi-Armed Bandit Algorithm, UCB, LinUCB 

algorithm. 

1.  Introduction 

The rapid advancement of information technology and growing frequency of user interactions are 

causing the Internet to generate massive amounts of data daily. This explosion of data, often referred to 

as "information overload," is not only putting significant load pressure on Internet infrastructure but also 

making it increasingly challenging for users and businesses to find relevant information efficiently. 

Recommendation systems have emerged as a vital solution to the problem of information overload. 

These systems have become an integral part of daily life, guiding users through a sea of information 

based on their preferences. However, these systems face several challenges, including the "cold start" 

problem, where the lack of initial user data makes personalized recommendations difficult [1]. To 

address these challenges, the Multi-Armed Bandit (MAB) problem in reinforcement learning serves as 

a promising avenue for optimizing recommendation systems. Specifically, this study focuses on the 

efficacy of the Upper Confidence Bound (UCB) algorithm within the MAB framework. The LinUCB 
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algorithm is a context-aware multi-armed bandit approach, designed to minimize cumulative regret 

through a balanced strategy of exploration and exploitation [2, 3]. It has been successfully implemented 

in Yahoo's personalized news recommendation system, significantly improving user engagement 

metrics such as clicks and read time. In summary, the LinUCB algorithm represents a significant 

advancement for recommendation systems. By leveraging user context, it can deliver highly 

personalized content, thereby enhancing user satisfaction and, consequently, the competitive advantage 

of various platforms. Cumulative regret serves as a measure of algorithmic performance, a concept that 

will be elaborated upon in subsequent sections of this study. 

2.  Problem Description 

2.1.  Multi arm slot machine problems and their basic concepts 

2.1.1.  Classical Multi-Armed Bandits. A learner and environment play a sequential game called a bandit 

problem (reflecting the uncertainly in decision-making and outcomes of the decisions). The game is 

performed on n tricks. In each rounds t=1,2,…,n, the learner chooses an action At from a set of k possible 

actions and receives a random reward Xt. The learner's aim is to maximize the cumulative reward over 

a period of time ,i.e., maximize ∑ Xt = X1 + X2 + ⋯ + Xn
n
t=1 .Then Regret =Reward lost by taking sub-

optimal decisions(Largest possible cumulative reward in n rounds if we know which arm is the best) 
∑ Xt

n
t=1 .It is crucial to balance the trade-off between exploration and exploration [4]. 

Figure 1 illustrates the model, highlighting how regret in reinforcement learning measures the 

performance gap between the learner's policy and the optimal policy within a set of competing policies 

[5]. This set of policies, often referred to as the competitor class Π, includes the optimal policy for all 

possible environments in E. By measuring the regret relative to Π, we can assess the learner's 

performance in terms of the loss incurred compared to the optimal policy. The regret captures the 

difference between the maximum expected reward achievable using any policy in Π and the expected 

reward collected by the learner. To ensure a comprehensive evaluation, it is important that Π 

encompasses the optimal policy for all environments in E. This way, the regret reflects the learner's 

performance relative to the best possible policy across all possible situations. The Environment does not 

reveal the reward of the action not selected by the learner. The learner should gain information by 

repeatedly selecting all actions which called exploration. When the learner select a “bad” action, it loses 

from the cumulative reward (The learner should try to “exploit” the action that returned the largest 

reward so far). Example: Two-armed slot machine, i.e., k=2, Let’s assume we played 10 rounds and 

receive the following rewards: 

 

Figure 1. The relationship between the competitor and K-armed Bandit (Photo/Picture credit: Original). 

Table 1. Action-Reward Distribution for Left and Right Moves Over 10 Trials. 

Action\Reward 1 2 3 4 5 6 7 8 9 10 

Left 0  10 0  0    10 

Right  10   0  0 0 0  
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Table 1. In the first 10 rounds, the left and right options were chosen five times each. Assuming 10 

additional rounds to be played, the left option shows signs of improvement, boasting an average yield 

of $4, compared to the right option's average yield of $2. This situation illustrates one of the central 

challenges in bandit problems: the inherent uncertainty involved in selecting from multiple options. 

Suppose there are k arms l possible action: {1, …, k}. Reward from each action is a Bernoulli random 

variable, e.g., 

 Reward from action I={
0,    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1 − 𝜇𝑖

1,    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦           𝜇𝑖
                                        (1) 

This k action can represent k different ads, and ui’s can be click probability of a user who is shown 

advertisement I. So, it is obvious to have E[𝑅𝑒𝑤𝑎𝑟𝑑(𝑖)] = 𝜇𝑖, i=1, …, k (expected value of the Reward 

from action I). 

The muti-armed bandit problem is to se queitially decide which action to take in each round 1, 2, …, 

n without any prior knowledge on the mean rewards 𝜇1 , … , 𝜇𝑘.if we know 𝜇𝑖’s, the optimal policy 

would be to take the action with the largest mean reward in all rounds, i.e., 

𝑘∗=arg max 𝜇𝑖 ,𝑖 ∈ {1, … , 𝑘}                                                (2) 

And our total expected reward over n rounds with that choice would be n*𝜇𝑘∗The regret of any 

algorithm l policy is then given by the difference between n*𝜇𝑘∗  and the total reward our policy has 

achieved, i.e., 

𝑅𝑛 = n ∗ 𝜇𝑘∗ − 𝐸[∑ 𝑋𝑡
𝑛
𝑡=1 ]                              (3) 

The regret in reinforcement learning is a measure of how much worse the learner's performance is 

compared to the best possible performance. It takes into account the randomness in the environment and 

the policy being used. The difference between the maximum expected reward achievable with any policy 

and the expected reward collected by the learner can be referred to as regret. The first term represents 

the best possible performance, while the second term represents the actual performance of the learner. 

The regret depends on the specific environment and policy being used. In environments where the 

regret is large, it means that the learner is performing significantly worse than the best possible 

performance. On the other hand, in ideal cases, the regret would be small for all environments, indicating 

that the learner is performing close to the best possible performance. In all possible environments, the 

worst-case regret is the maximum regret that can occur. It represents the scenario where the learner 

performs the worst across all possible situations. 

2.1.2.  Types of Bandits Problems. Stochastic Stationary Bandits means that the Reward of each action 

comes from a fixed distribution [6]. None-Stationary Bandits explain that the Reward distribution may 

change over time. Structured Bandits means that There is a known “structure” in the way rewards from 

different arms are distributed. Then Contextual Bandits means before taking an action at each round, we 

receive a “side information” or “context” about the current state of the environment [7]. Over time the 

goal is to learn the best action for each context. The application of personalized recommendations, where 

the context can be user’s age | gender|. 

Multi-armed gaming machine algorithms, as a form of reinforcement learning, discard the traditional 

reinforcement learning's characteristic of single-step forward, can be dynamically updated accordingly, 

and these dynamically updated parameters can continue to feed back to the system, thus realizing 

adaptive reinforcement Learning. Common multi-armed gaming machine algorithms in recommender 

systems include traditional MAB algorithms and MAB algorithms that take contextual information into 

account, among which traditional MAB algorithms include Thompson sampling, UCB algorithm 

(upward confidence interval block algorithm), Epsilon Greedy algorithm (greedy algorithm), LinUCB 

(linear upward confidence interval bounding algorithm), CBA (group UCB algorithm), Thompson 

sampling (Thompson sampling algorithm), Contextual MAB algorithms are commonly known as 

LinUCB algorithm. 
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2.2.  Mathematical Model 

In each round, an arm is selected and its associated reward is observed. If the kth arm is selected and a 

reward of x is obtained, the probability of receiving that specific reward can be calculated based on the 

probability distribution 𝑟𝑘. The objective is to maximize cumulative rewards through continuous arm 

selections, which requires a delicate balance between exploration and exploitation. In other words, the 

aim is not only to choose arms believed to yield high rewards but also to explore potentially high-

rewarding arms by testing new options. A multi-armed slot machine, mathematically modeled with K 

arms, each featuring an unknown reward probability distribution, serves as the foundational framework 

for this problem [8]. The goal is to identify high-reward arms and maximize cumulative rewards by 

continually making selections. Various algorithms can address this challenge, enabling a trade-off 

between exploration and exploitation. 

3.  Overview of UCB algorithm principles 

3.1.  Basic ideas and working principles 

To better understand their probability distributions, the algorithm prioritizes slots with higher upper 

confidence bounds for exploration. Slots with higher upper confidence bounds are prioritized by the 

algorithm for exploration to improve understanding of their probability distributions. The algorithm 

adjusts the upper confidence bound as exploration progresses and gradually opts to select slots with 

higher upper confidence bounds to use [9]. The maximum regret that can happen is the worst-case regret 

in any possible environment. In each round, assign a value to each arm (called the UCB index of that 

arm) based on the data observed so far that is an overestimate of its mean reward (with high probability), 

and then choose the arm with the largest value I index [10]. 

E.g., 

UC𝐵𝑖(t-1) =𝜇�̂�(t-1) +Exploration Bonus                       (4) 

The item on the left is UCB index of arm I in round t-1, First item on the right is average reward 

from arm I till round t-1,then 𝜇�̂�(𝑡 − 1) =
∑ 𝑋𝑠1[𝐴𝑠=𝑖]𝑡−1

𝑠=1

𝑇𝑖(𝑡−1)
, Second item from the right is a decreasing 

function of 𝑇𝑖(𝑡 − 1)  which means number of samples obtained from arm I so far, so the fewer samples 

we have for an arm, the larger will be its exploration bonous. Being optimistic about the unknown 

supports exploration of different choices, particularly those that have not been selected many times. 

Should be large enough to ensure exploration but not so large that sub-optimal arms are explored 

unnecessarily .Let{𝑋𝑡 , 𝑡 = 1, … , 𝑛}be a sequence of independent 1-subGaussian random variables with 

mean 𝜇.Let’s �̂� =
∑ 𝑋𝑡

𝑛
𝑡=1

𝑛
,then, 

P (�̂� + √2log (
1

𝛿
)

𝑛
> 𝜇)≥ 1 − 𝛿       𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿 ∈ (0,1)                 (5) 

The first term on the left-hand side of the inequality in parentheses is empirical average over n 

samples, the second term on the left-hand side of the inequality in parentheses is the term add to the 

average to over estimate the mean. 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

4



 

Figure 2. Average rewards of arm from their samples until round t (Photo/Picture credit: Original). 

Figure 2 illustrates that the true mean rewards are likely to fall within the displayed confidence 

intervals. Notably, as the number of samples for an arm increases, the corresponding confidence interval 

becomes narrower. The best arm 𝑖∗ to be selected many times so that: 

𝑇𝑖∗(𝑡 − 1) →∞    𝑎𝑛𝑑   𝜇�̂�
∗ → 𝜇𝑖∗                       (6) 

In other words the UCB index of the best arm will be approximately equal to its true mean 𝜇𝑖∗ .For 

all arms: 

𝑈𝐶𝐵𝑖(𝑡 − 1) ≥ 𝜇𝑖 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑟𝑒𝑐𝑎𝑙𝑙 𝑡ℎ𝑎𝑡 𝜇𝑖∗ ≥ 𝜇𝑖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑖∗  (7) 

In a 2010 article published by scientists at UBC, the transformation of the UBC algorithm was 

explored for its application in Yahoo! News recommendations. This refined version of the UBC 

algorithm has been named LinUCB. A standout feature of LinUCB is its ability to incorporate relevant 

feature vectors into its calculations. LinUCB operates on the assumption that when an item is selected 

and presented to a user, the returns are linearly related to certain relevant features, often referred to as 

"context." These contextual features often form the most substantial part of the solution space in 

practical applications. Therefore, the experimental process involves predicting returns and confidence 

intervals based on user and item features. The item with the highest upper confidence bound is then 

recommended. Following this, observed returns are used to update the parameters of the linear 

relationship, thereby facilitating ongoing experimental learning. 

3.2.  Calculation method 

At each round t=1, 2, …, n, choose the action: 

𝐴𝑡 = 𝑎𝑟𝑔𝑖 𝑚𝑎𝑥    𝑈𝐶𝐵𝑖(t-1,𝛿) 

= 𝑎𝑟𝑔𝑖 max (𝜇�̂�(𝑡 − 1) + √
2log (

1

𝛿
)

𝑇𝑖(𝑡−1)
)                 (8) 

where 𝜇�̂�(𝑡 − 1) stands for average reward from arm I until round t-1, 𝑇𝑖(𝑡 − 1) stands for number of 

times arm I is selected until round t-1. 
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3.3.  Algorithm steps and processes 

 

Figure 3. UCB Algorithm steps (Photo/Picture credit: Original). 

Figure. 3. Shows that the process of the UCB algorithm. First, Calculate the average reward for each 

arm based on the historical data. Second, Calculate the upper confidence bound for each arm using the 

following formula: UCB = average reward + c * sqrt (ln(total number of rounds) / number of times the 

arm has been pulled), where c is a constant that determines the level of exploration. Third, Select the 

arm with the highest UCB value and pull it. Forth, Update the historical data with the new reward 

obtained from pulling the selected arm. Fifth, Repeat steps 1-4 until a certain stopping criterion is met. 

4.  Performance Analysis of UCB Algorithm 

4.1.  Theoretical analysis 

The regret upper bound and the convergence speed constitute the theoretical analysis of the performance 

of the UCB algorithm. In this case, regret refers to the difference in average reward from the optimal 

arm during the computation. The convergence speed refers to the growth rate of the average reward in 

the near-optimal arm. The speed of convergence is evaluated by the number of choices. 

4.2.  Numerical experiments 
It is significant to compare the performance of three multi-armed bandit (MAB) algorithms on real 

datasets, the MovieLens dataset is a vast collection of Movielens movie user reviews, which is 

commonly used in recommendation systems for algorithmic testing. The Grouplens team cleaned the 

data to remove user ratings that had less than 20 ratings or without complete demographic 

information.1,000,209 anonymous ratings of approximately 3,900 movies by 6,040 users who joined 

MovieLens in 2000. 

Thus, to check their validity in real-world experiments, It is significant to run a sufficient number of 

experiments and look at the average value of the cumulative regret. Choose the horizon as n = 50, 000. 

For each algorithm run ten experiments and record the cumulative regret at each round t = 1, . . . , n in 

all experiments. For the ETC algorithm, set the length m*k of the exploration phase as ≅
10% 𝑜𝑓 𝑛, 𝑖. 𝑒. , 𝑚 ∗ 𝑘 ≅ 5000. For the UCB algorithm, set the UCB index for arm I at round t-1 as 

𝑈𝐶𝐵𝑖(𝑡 − 1) = 𝜇�̂�(𝑡 − 1) +
𝐵

2
√

4𝑙𝑜𝑔𝑛

𝑇𝑖(𝑡−1)
                          (9) 

Where B is the difference between the maximum possible reward value and the minimum possible 

reward value. For example, for the Movie Lens dataset where rewards (i.e., ratings) can be in the interval 

1-5 (stars), B should be set as 4. In general, a bounded random variable with difference between 

maximum and minimum value being B is σ-subgaussian where σ = B 2, and the exploration bonus needs 

to be updated as in. For the TS algorithm, updating the distributions 𝐹𝑖(𝑡), 𝑖 = 1, … , 𝑘 𝑓𝑜𝑟 the belief on 

the mean rewards of arms as following: 
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𝐹𝑖(𝑡)~Ν (𝜇�̂�(𝑡),
𝐵2

4

𝑇𝑖(𝑡)
) ,        𝑡 = 𝑘 + 1, …                    (10) 

where 𝜇�̂�(𝑡) is the average reward of arm i until round t, B is as given above for the UCB algorithm, 

𝑇𝑖(𝑡) is the number of samples received from arm i until round t, and N (µ, σ2) stands for the Gaussian 

distribution with mean µ and variance 𝜎2. 

 

Figure 4. Average Regret with Error Bars (Photo/Picture credit: Original). 

The theoretical findings introduced in lectures, such as the logarithmic scaling of cumulative regret 

for the algorithms discussed, hold true in the limit as n→∞. As shown in Figure 4. However, the actual 

size of n required to observe this logarithmic behavior may vary depending on specific circumstances, 

including the chosen algorithm and the underlying reward distributions.Set five different values for the 

horizon: n = 500, n = 5, 000, n = 50, 000, n = 500, 000, and n = 5, 000, 000. For the ETC algorithm, set 

the length m ∗ k of the exploration phase as 10% of n. 

 

Figure 5. Cumulative Regret for Horizon n=500 (Photo/Picture credit: Original). 

From the figure 5, it can be seen that the slope of ETC is higher, UCB is in the middle, and TS is 

lower. As n increases, TS shows logarithmic regret behavior and the gap between the three algorithms 

is clearly reflected, as shown in Figure. 6. At this time, ETC shows logarithmic regret behavior, as shown 

in Figure. 7. When n=500000, ETC has the largest cumulative regret value, forming a gap with the other 

Proceedings of the 4th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/47/20241076

7



two algorithms, and the cumulative logarithmic behavior of UCB is more obvious, as shown in Figure. 

8. When n=5000000, the cumulative regret behavior of UCB is not obvious as shown in figure.9. 

 

Figure 6. Cumulative Regret for Horizon n=5000 (Photo/Picture credit: Original). 

 

Figure 7. Cumulative Regret for Horizon n=50000 (Photo/Picture credit: Original). 

 

Figure 8. Cumulative Regret for Horizon n=500000 (Photo/Picture credit: Original). 
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Figure 9. Cumulative Regret for Horizon n=5000000 (Photo/Picture credit: Original). 

At n=5000, TS shows logarithmic regret behavior and at n=50000, UCB shows logarithmic regret 

behavior, this value varies from one algorithm to another. In order to compare the performance of the 

UCB and the asymptotically optimal UCB algorithms. It is significant to explore the impact of the 

exploration bonus on the algorithm performance. Choose n = 50, 000. The asymptotically optimal UCB 

algorithm uses the UCB index given as 

𝑈𝐶𝐵𝑖(𝑡 − 1) = 𝜇�̂�(𝑡 − 1) + 𝐵√
2log (ƒ(𝑡))

𝑇𝑖(𝑡−1)
                     (9) 

Where ƒ(𝑡) = 1 + 𝑡(log 𝑡)2 . It is significant to compare the performance of the asymptotically 

optimal UCB and the standard UCB with three different 𝜏 values: 𝜏 = 1, 𝜏 = 2, and 𝜏 = 4. Note that, 

the larger is the 𝜏  value the more will the algorithm explore, while with smaller 𝜏  it will more 

aggressively exploit. 

 

Figure 10. Comparison of Standard UCB and asymptotically optimal UCB (Photo/Picture credit: 

Original). 

From the figure 10, it can be seen that as n grows, the overall rate of growth of cumulative regret 

value decreases, Standard UCB (lota=1) cumulative regret value is less than Standard UCB (lota=2), 

Standard UCB (lota=2) cumulative regret value is less than Optimal UCB, Optimal UCB cumulative 

regret value is less than Standard UCB (lota=4). 
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4.3.  Algorithm Comparison 

It is significant to set n = 1, 000, 000 and plot on the same figure the results for ETC, UCB, 

asymptotically optimal UCB, and Thompson Sampling algorithms (averaged over 100 experiments with 

error bars) and compare their performance. 

 

Figure 11. Algorithm Comparison (Photo/Picture credit: Original). 

In the figure 11, Standard UCB (in=2), Standard UCB (in=4), and Asymptotically Optimal UCB go 

basically in the same direction, and Asymptotically Optimal UCB cumulative regret value is lower than 

that of Standard UCB, and the cumulative regret value of TS is shown to be the lowest as the round 

increases. 

5.  Application and Improvement Research of UCB Algorithm 

The more accurate the extraction of user preferences is implied, the more effective the recommendation 

algorithm. The more efficient the recommendation algorithm is, the more precise the extraction of user 

preferences is implied. The extracting of item features with sufficient accuracy can also reflect the user's 

preference information to a certain extent. User preferences can be reflected by a lot of data generated 

about users and various information directly related to items. Labeled data related to users and projects 

is what we collectively refer to as labeled data, and we combine it to form multidimensional labels. 

Initialisation: For each element, initialise its characteristic vector and covariance matrix. The 

algorithm's main concept is to use a linear model to model the user's preference and then use the upper 

bound confidence interval to select the optimal recommendation item. 

The following are the specific descriptions: 

First, for each element, initialize its functionality vector and its covariance matrix. Initiate the reward 

estimation and confidence interval for each item simultaneously. Second, Analyze the user's feature 

vector by analyzing their past behavior and feedback. Third, Using the current feature vector and 

covariance matrix, calculate the upper bound confidence interval for each item. The item's reward 

uncertainty range is represented by the upper confidence interval. Forth, Select the optimal item: 

according to the upper confidence interval, select the item with the largest upper confidence interval as 

the recommended item. Fifth, user feedback update: update the reward estimate and covariance matrix 

of the selected item based on user feedback. sixth, repeat steps 2-5 until a predetermined number of 

recommendations or convergence conditions are reached. 
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Figure 12. Algorithmic step (Photo/Picture credit: Original). 

Figure. 12. Two advantages of the LinUCB algorithm can be summarized from the above process: 

The computational complexity is linearly related to the number of arms. Support dynamically changing 

candidate arm set. 

The key to the LinUCB algorithm is the use of a linear model to model the user's preferences and to 

balance the strategies of exploration and exploitation by means of upper bound confidence intervals. By 

continuously updating the reward estimation and covariance matrix, the algorithm can progressively 

optimize the recommendation results and provide personalized recommendation suggestions. 

 

Figure 13. Average Cumulative Regret (Photo/Picture credit: Original). 
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Figure 14. Average Cumulative Regret (Photo/Picture credit: Original). 

Figure 13 illustrates that cumulative regret values are linearly correlated. After multiple rounds of 

selection, these values reach single digits, optimizing the algorithm's performance in comparison to 

traditional UCB approaches. Figure 14 corroborates this, indicating that as the number of rounds 

increases, cumulative regret values maintain single digits without significant fluctuation. Summarizing 

the attributes of the LinUCB algorithm, several advantages come to the fore: Accelerated convergence 

relative to UCB algorithms is achieved through the inclusion of features, as substantiated in the paper. 

The effectiveness of the algorithm heavily hinges on feature construction, marking it as both a critical 

engineering challenge and an area of significant value. Due to the computational involvement of features, 

a dynamic pool of recommendation candidates can be managed, enabling editors to add or remove 

articles as needed. 

Feature dimensionality reduction becomes essential for computational efficiency. When comparing 

LinUCB to traditional online learning models such as FTRL, two primary distinctions arise: LinUCB 

employs individual models for each arm, requiring the context to only encompass user-related and user-

arm interaction features, thereby eliminating the need for arm-side features. In contrast, traditional 

online learning methods apply a unified model across entire business scenarios. Unlike traditional online 

learning models that employ a greedy strategy to maximize short-term gains without an exploration 

mechanism, LinUCB adopts a more effective Exploration and Exploitation (E&E) mechanism, 

prioritizing long-term overall benefits. 

6.  Conclusion 

This study reveals that the cumulative regret value for LinUCB is in the single digits, indicating its 

distinct advantage in optimizing algorithms with a focus on long-term, overall benefits when compared 

to traditional UCB algorithms. This performance can be attributed to LinUCB's use of a linear model 

for modeling the reward function of each arm, allowing for a better fit in high-dimensional feature spaces. 

Such linear models facilitate more accurate reward predictions by learning the weights associated with 

each feature, thus providing a nuanced estimate of each arm's potential value. By employing a linear 

model, LinUCB adapts the reward function for each arm based on personalized user features. This 

enables the algorithm to deliver more tailored recommendations, which align closely with individual 

user preferences and characteristics. In contrast, traditional UCB algorithms assume a uniform reward 

function across all arms and are unable to offer personalized recommendations. 

While LinUCB exhibits strong performance in multi-armed bandit problems, there exists scope for 

further refinement. Opportunities for future research include exploring avenues to enhance the 

algorithm's efficiency and accuracy. Although LinUCB employs a linear model for the reward function, 

some scenarios may involve more complex, nonlinear relationships. Investigating the application of 
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nonlinear models to LinUCB could provide solutions for handling more intricate reward functions and 

contextual relationships. 
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