
Applied and Computational Engineering (ACE) 

Published by EWA Publishing © 2023 The Authors 52  

Research on the Lane Recognition Method Based on 

Computer Vision 

Weiqi Kong 

Jiangxi Normal University (Yaohu Campus), 99 Ziitao Dadao, Nanchang City, Jiangxi 

Province, China 

 

E-Mail: 1678637972@qq.com 

Abstract. The lane line is the most important traffic sign in road traffic and plays a significant 

function in restricting and guaranteeing the running of vehicles. Whether in the vehicle safety 

driving system or in the intelligent vehicle navigation based on machine vision, lane detection 

and recognition is a basic and necessary function module. This can enable future in-depth 

studies on intelligent transportation while also lowering the likelihood of traffic accidents. 
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1. Background 

In 2020, Ren and his group came up with a proposal for an end-to-end lane detecting methodology. 

This model is divided into two parts: the first part is feature extraction by deep network, that is, a 

weight is given to each pixel in the picture to represent the likelihood that the pixel is a member of the 

lane line; in the second part, based on the weight extracted in the first part and the curve in ground 

truth, the network parameters are modified through back propagation to output the parameters fitting 

the lane line curve. They implemented lane line detection in an end-to-end manner, and two parts of 

the network implemented the recognition weight and curve models, respectively. From the 

experimental effect, their model completely identified the lane lines [1]. In 2020, a team of researchers 

at the University of Michigan in Ann Arbor proposed a real-time enhanced lane detection method for 

understanding scene physics. The model is divided into two parts: the first component is a hierarchical 

semantic segmentation network, which functions as a scene feature extractor; the second part is lane 

inference using a physically improved multi-lane parameter optimization module. Semantic 

segmentation in this model relates to the method of giving each pixel in a picture a semantic label. 

Types of labels include Cityscape and Vistas [2]. In the literature [3], researchers learn a richer 

structure and context through the network built by the transformer, where the lane shape model is 

developed based on the road structure and camera posture, which can provide a physical interpretation 

for the network output parameters. Transformer uses a self-attention mechanism to model non-local 

interactions to capture their slender structure and global context. In the literature [4], researchers used 

ultrafast structure-sensing lane lines to detect the new network. The lane detection process is treated as 

an issue with row-based selection using global characteristics to select lane locations in the 

predetermined semantic rows of the image rather than each pixel of the lane segmentation based on the 
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local receiving domain. In addition, they also proposed structural loss to model the channel structure. 

In the literature [5], researchers proposed a panoramic driving awareness network to simultaneously 

segment the drivable area, detect lane lines, and detect traffic targets. The team came up with the 

YOLOP model. The model consists of three decoders for processing particular jobs and an encoder for 

feature extraction. Encoders are consisting of a neck network and a backbone network. The decoder 

consists of three heads: the detection head, the feasible domain head, and the lane line head. In the 

literature [6], researchers proposed a semantic segmentation method for lane markings based on the 

fusion of lidar and cameras. In order to obtain accurate location information in the segmentation 

results, the semantic segmentation object of this method is the converted aerial view from the LIDAR 

point cloud rather than the image captured by the camera. First, researchers use the network to 

segment the captured images and then combine the segmentation results with the point cloud collected 

by LIDAR as the input of the network. They also added long- and short-term memory structures to 

help the network segment lanes semantically by using time series information. In literature [7], the 

research team of Huawei and Sun Yat-sen University proposed the lane-sensitive architecture 

shrinking framework. The framework comprised in three sections: the first section is the feature fusion 

search module, which is used to better integrate local and global contexts for the features of the multi-

layer jagged structure; the second part is the elastic trunk search module, which explores the feature 

extractor with good semantic information and potential information. The third part is an adaptive point 

mixing module, which is used to search for multi-level post-processing strategies to combine the 

prediction results of multi-scale heads. In the literature [8], researchers proposed a generic, scalable, 

and 3D lane detecting technique. This method proposes to introduce a new representation of geometric 

lane lines in a new system of coordinates and straight from the network output, apply a certain 

geometric modification to determine genuine 3D lane positions. Second, they propose a scalable two-

stage architecture that separates learning from geometric coding subnetworks and image segmentation 

subnetworks. 

The technique that the author of this article employed consisted of first projecting the three-

dimensional scene onto the image plane by using projection transformation, then projecting the image 

that was captured onto the flat road plane by using plane homography, and finally projecting a point of 

the panoramic view onto the same image pixel, which had to be on the same light. It was decided to 

make the optical center of the camera the starting point for the camera’s coordinate system, and the 

vertical projection point from the camera to the ground was taken as the system of coordinates for the 

automotive body and the origin of the panoramic view. Then, the image was encoded by the network, 

the features were converted into the panoramic view, and the network was also utilized to make 

predictions about the lane locations that were represented in the panoramic view. In this paper, the 3D 

lane locations in the coordinate system for the car body are calculated by the author using geometric 

transformation.  

2. Content of This Research Project 

2.1. Geometric Detection of 3D Lane Lines 

The x, y, and z axes and the origin O represent the car body coordinate system, perpendicular to the 

road; xc, yc, and zc, and the origin C, represent the camera coordinate system. Therefore, it is possible 

for us to construct the view by first projecting the three-dimensional scene onto the image plane using 

projection transformation, and then projecting the picture that was acquired onto the flat road plane 

using plane homography. Since camera parameters are involved, points in the panoramic view 

correspond to corresponding 3D points in the car body coordinate system and have different x, y, and 

z values in principle. Let's derive the relationship between the panoramic view coordinates and the 

real-world coordinates. While designing a projection camera, it is important to ensure that the 3D 

point (x, y, z), its projection on the image plane, and the optical center of the camera (0, 0, h) are all 

positioned on a single ray. Accordingly, if a point of the panorama view is projected onto the same 

image pixel, that point must be on the same ray. Therefore, the center of the camera (0,0, h), the 3D 
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point (x, y, z), and their corresponding panoramic view points appear collinear, and the relationship 

between these three points can be written as: 
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Taking the camera’s  optical center as the camera coordinate system’s origin and the vertical 

projection point from the camera to the ground as the automotive body coordinate system’s origin 

and panoramic view, we derive the conversion relationship between the coordinates of the God view 

chart and the coordinates of the automotive body coordinate system. According to the proposed 

geometric shape, 3D lane detection was solved in two steps. First, we encoded the image using the 

network in order to turn the features into a panoramic view and to make a prediction about the lane 

locations that were represented in the panoramic view. Then we use a geometric transformation to 

calculate 3D lane points in the carbody coordinate system. Specifically, the steps are as follows: 

• Step 1: Use an image semantic segmentation network to predict lane masks. 

• Step 2: Transform the mask into a panoramic view using the Inverse Perspective Mapping 

(IPM) module and the camera's internal parameter matrix. 

• Step 3: Predict lane lines in the panoramic view. 

• Step 4: Map the lanes in the panoramic view back to real-world coordinates using the above 

geometric relationships. 

Similar to the 3D lane line network, the anchor representation enables the network to directly predict 

3D lane lines in the form of multiple lines. The essence of anchor representation is to use a network to 

realize contour grouping and boundary detection in a structured scene. The network that was 

employed for this study produces 3D lane lines in the panoramic view based on this anchor 

representation, and then it applies the transformation algorithm that was derived earlier to calculate the 

3D lane points that correspond to those lane lines. Taking into account each lane point's projected 

likelihood of visibility, reserve only those lane points that are visible and have a high probability of 

contributing to the final output. It has two main features: (1) Anchor position: We define N equidistant 

vertical lines of x position and y position in advance; (2) values to be predicted by the anchor: offset, z 

coordinate of the current point, visibility v, probability p. Compared to 3D lane line networks, anchor 

representation involves two major improvements: (1) Representation of lane point locations in 

different spatial panoramas Representing lane points in a panoramic view ensures that the target lane 

location is aligned with the image features projected into the top view. (2) Unlike the 3D lane 

network's global coding of the entire scene, the local patch-level correlation coding adopted by the 

method used in this paper is more robust when dealing with new or unseen scenes. The approach used 

in this article adds additional properties to the anchor representation, such as the visibility of each 

anchor point. Due to this, the method is more stable when dealing with partially visible lane lines that 

begin or end midway. 

The loss function of model training is predicted as follows: 
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The discriminative push-pull loss utilized for lane clustering’s global embedding is as follows: 
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In order to create the camera coordinate system, we finally translate the lane line points in the BEV 

plane: 
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2.2. Geometric Detection of 3D Lane Lines  

As shown in Figure 1, the x, y, and z axes and origin O represent the coordinate system of the vehicle 

body, perpendicular to the road; and xc, yc, zc, and origin C represent the camera coordinate system. 

Therefore, it is possible for us to construct a panoramic view by first projecting the three-dimensional 

scene into the image plane using projection transformation, and then projecting the image that was 

acquired onto a flat road plane using plane homography. Considering that camera settings are relevant, 

points in the panoramic view correspond to corresponding 3D points in the car body coordinate system 

and have different x and y values in principle. 

 

Figure 1. Camera setup and ego-vehicle coordinate frame. 

We derive the relationship between the panoramic view coordinates and the real-world coordinates. 

While designing a projection camera, it is important to ensure that the 3D point (x, y, z), its projection 

on the image plane, and the optical center of the camera (0, 0, h) are all positioned on a single ray. In a 

similar vein, in order for a point in the panorama view to be projected onto the same image pixel, that 

point needs to be on the same ray. Therefore, the center of the camera (0,0, h), the 3D point (x, y, z), 
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and their corresponding panoramic view points appear collinear, which shows in Figure 2 (a) and (b). 

Formally, the relationship between these three points can be written as follows: 
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We take the camera’s optical center as the camera coordinate system's origin and the vertical 

projection point of the camera to the ground as the automotive body coordinate system’s origin and the 

panoramic view. Then the conversion relationship between the coordinates of the panoramic view and 

the coordinates of the automotive body coordinate system is derived from the following figure: 

 

Figure 2. Geometry in 3D lane detection. 

Whether 0 (top)>or z<0 (bottom), the collinear correlation between 3D lane points (r, 3y, z) and their 

projection on the virtual top view (0, g, 0) and camera center (0, 0, h) remain unchanged. In the virtual 

top view, we make the assumption that the lane height z is conceptually similar to the estimate vector 

field (represented by the black arrow), and then we move the top view lane points (represented by the 

red curve) to their desired positions so that they can form parallel curves (blue curve). 
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2.3. An Anchor Representation of Geometric Guidance 

According to the proposed geometry, our two-step approach to solving the 3D lane detecting: First, we 

use the network to encode the image, convert the features into a panoramic view, and predict the lane 

points represented in the panoramic view; secondly, we use geometric transformation to calculate the 

3D lane points in the car body coordinate system. Specifically, the steps are as follows: 

(1) Use an image semantic segmentation network to predict lane lines. 

(2) Use the Inverse Perspective Mapping (IPM) module to convert the lane map into the God 

view map (requires the camera’s internal parameter matrix). 
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(3) Predict lane lines in the God View diagram. 

(4) Map the lane lines in the God's View graph back to real-world coordinates using the 

geometric relationships derived in the previous section. 

 

Figure 3. Anchor points representation. 

Lane anchors are defined as N equidistant vertical lines in x-position {XA}g1. Given a set of 

predefined fixed y positions {yi}1, 3D lanes can be used by the 3·K attribute {(yuan, z, v)}. 

2.3.1. On the basis of the x value at Yref, the ground truth lane is connected to its nearest anchor point 

Similar to the 3D lane line network, the anchor representation enables the network to directly predict 

3D lane lines in the form of multiple lines. The essence of anchor representation is to use a network to 

realize boundary detection and contour grouping in a structured scene. According to this anchor 

representation, the network that was utilized for this study generates 3D lane lines in the panoramic 

view. Following this step, the transformation method described earlier is used to calculate the 3D lane 

points that correspond to these lane lines. Given the predicted probability of visibility for each lane 

point, only those lane points with a high probability of visibility are reserved for the final output. It has 

two main features: (1) anchor position: N equidistant vertical lines of x position and y position are 

defined in advance; (2) values to be predicted by the anchor: offset x and z coordinates of the current 

point, visibility v, and probability p. 

Anchor representation involves two major improvements over 3D lane line networks: (1) 

Representation of lane point locations in a panoramic view: this method ensures that the target lane 

location is aligned with the image features projected into the top view. (2) Unlike the 3D lane network

’s global coding of the entire scene, the local patch-level correlation coding adopted by the method 

used in this paper is more robust when dealing with new or unseen scenes. The approach used in this 

article adds additional properties to the anchor representation, such as the visibility of each anchor 

point. Due to this, the method is more stable when dealing with partially visible lane lines that begin or 

end midway.  



 
 

 58  

2.4. A Two-Stage Network Framework with Image Coding and Geometric Inference Coupled Learning 

 

Figure 4. Two-Phase network architecture. 

In the first stage, we feed input images of size W * H into the image segmentation subnet to generate 

channel segmentation with the same resolution. The middle segmentation map uses a 3D universal 

network, which is made up of a top view segmentation encoder and a lane prediction head, to generate 

3D lanes that are then represented by a virtual top view. In the final step of this process, we make use 

of the geometric transformation in order to compute the 3D lane locations within the coordinate 

system of the car body. 

Stage 1: Image semantic segmentation network 

Stage 2: 3D universal network Output prediction lane position based on a split network 
Using an end-to-end learning network, this paper uses a two-stage framework to decouple image 

coding learning and 3D geometric extrapolation understanding. As can be seen in Figure 4, the 

primary objective of the first subnetwork is the classification of lane lines inside the image domain. 

The segmented output from the first subnetwork is used as the input for the second subnetwork, which 

then makes a prediction about the 3D lane structure. The framework of these two stages shows that 3D 

geometry coding and image feature extraction are independent of each other. As shown in Figure 2(a), 

the ground height z value is closely related to the displacement vector from the position (x1,y1) to the 

position (x2,y2). In fact, in the panoramic view, we believe that estimating the lane height z is 

conceptually identical to estimating the black arrows that are part of the vector field and are 

responsible for moving the red curve of the top view lane point to its final destination position so that 

blue curves can be formed in parallel. Over the same time period, the network will be encoding the 

correlation that exists between the visual features and the target vector field. Due to the fact that the 

target vector field is primarily concerned with geometry, the simple characteristics recovered from 

sparse lane segmentation are sufficient. 

In the first stage, 2D image segmentation can be achieved by using lightweight semantic segmentation 

network models, such as ERFNET, FCN, etc. For simplicity, we chose to apply ERFNET to the first 

phase of the framework. For the second phase of 3D lane alignment prediction, we proposed a 3D-3D 

universal network, as shown in Figure 4. The top-view segmentation encoder works by first projecting 

the segmentation map input onto the top-view layer, and then encoding the data from the segmentation 

map into the feature map using a sequence of convolutional layers. The lane line prediction head is 

responsible for predicting the position of the lane points on the top view as well as the attributes of the 

3D lane lines that are based on the anchor representation. 

The average end-to-end learning framework is very sensitive to the appearance of images and relies on 

large amounts of real-world 3D data. However, the two-stage approach in this paper can significantly 

reduce the cost because it is no longer necessary to gather redundant real 3D lane label data in the 

same location at different times of day, with varying degrees of occlusion, and different types of 

weather. In addition, the two-stage framework can be used to train a more reliable two-dimensional 

lane segmentation subnetwork with more adequate two-dimensional real data. The performance of 3D 

lane prediction is significantly improved when exceptionally accurate segmentation is used as input. 

The two-stage framework can, in the best-case scenario, train the image segmentation subnetwork 
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using 2D real data and train the 3D geometry subnetwork using only synthesized 3D data. This 

requires domain transfer techniques to resolve the domain gap that exists between the perfect synthetic 

segmentation base truth value and the segmentation output of the first subnetwork. 

The loss function is shown in Formula (12): 
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Compared with the loss function introduced in the 3D lane line network, it has three changes. First of 

all, x belongs to the panoramic frame, not to the body frame. Second, we decided to add an extra loss 

term so that we could have a better idea of how much of a gap there was between the projected 

visibility vector and the Real visibility vector. Third, the distance loss term is multiplied by the 

visibility probability that corresponds to it, v, to ensure that those spots that are not visible have no 

impact on the calculation. Semantic segmentation networks and 3D universal networks are trained 

separately. Although the end-to-end feature reduces the aesthetics of the algorithm, it reduces the 

requirement for 3D annotation. 

3. Data Set 

We took the Apollo data set based on the Unity game engine and rendered the images with a variety of 

scene structures and visual appearances. The final data set was compiled from three different global 

maps, each of which featured a unique type of topographic information: highways, urban areas, and 

residential areas. All of the maps are based on actual locations in Silicon Valley, which can be found 

in the United States, and each map features lane lines, center lines, and dividing lines that incorporate 

sufficient ground height variations and turns, as indicated in Table 1 

Table 1. Examples of composite data. 

 balanced scenes rarely observed visual variations 

w/o w/ gain w/o w/ gain w/o w/ gain 

3D-

LaneNet 

F-score 86.4 90.0 +3.6 72.0 80.9 +8.9 72.5 82.7 +10.5 

AP 89.3 92.0 +2.7 74.6 82.0 +7.4 74.9 84.8 +9.9 

3D-

GeoNet 

F-score 88.5 91.8 +3.3 75.4 84.7 +9.3 838 90.2 +6.4 

AP 91.3 93.8 +2.5 79.0 86.6 +7.6 86.3 92.3 +6.0 

Gen-

LaneNet 

F-score 85.1 88.1 +3.0 70.0 78.0 +8.0 80.9 85.3 +4.4 

AP 87.6 90.1 +2.5 73.0 79.0 +6.0 83.8 87.2 +3.4 

We use detection methods from left to right to create images from highway maps, city maps, and 

residential maps. 

The experimental results are as follows: 
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Figure 5. The original image of the road. 

 

Figure 6. Lane detection result 1. 

 

Figure 7. Top view 1 of lane detection result. 

 

Figure 8. Lane detection result 2. 
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Figure 9. Top view 2 of lane detection result. 
 

Conclusion 

Lane line recognition can be implemented based on image processing and computer vision algorithms. 

Commonly used algorithms include edge detection, color segmentation, Hough transform, etc. 

 

The accuracy of lane line recognition is affected by many factors, including ambient lighting 

conditions, weather conditions, pavement quality, and so on. Complex environmental conditions can 

lead to identification errors or failures. 

 

Lane line recognition can be used for autonomous driving and assisted driving functions of vehicles. 

By detecting lane markings in real time, the system can assist vehicles to stay in lanes, change lanes, 

and perform actions such as turning. 

 

Lane line recognition can also be used for traffic management and road sign recognition. By analyzing 

lane lines on the road, information such as traffic flow and road congestion can be extracted to assist 

traffic management decisions. 

 

Lane line recognition technology still faces some challenges, such as multi-lane recognition in 

complex traffic scenarios, recognition at night or in low-light conditions, and recognition of road signs 

and construction areas. 

 

In conclusion, the use of computer vision for lane line recognition is a technology with both potential 

and challenges. With the continuous improvement of algorithms and the improvement of computing 

power, lane line recognition technology is expected to achieve higher accuracy and robustness in the 

future, making greater contributions to intelligent transportation and vehicle safety. 
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