

Sentimental analysis for clothing dataset

Zhezhong Ding1, 4, Zhuoheng Du2, Qingqi Yang3

1Wuhan Britain-China School, Wuhan, 630000, China, zhezhongding@163.com
2Chongqing Nankai Secondary School, Chongqing, 404100, China,

1924479827@qq.com
3The High School Attached to Hunan Normal University, Changsha, 410000, China

423198@qq.com

4zhezhongding@163.com

Abstract. In recent years, sentiment analysis has been applied to various fields, including politics,

business, education, etc. Simultaneously, with the development of science and quality of life,

clothes have become an increasingly important part of people's daily lives, especially women. In

this research, using Natural Language Processing, we interpret a dataset about clothing by trying

different approaches, which include other models (CNN, RNN, and LSTM), different optimizers

(Adam, RMSProp, and SGD), and different hyper-parameters (Epochs, Batch Sizes, and

Learning Rate). Then, we analyze the influences of those approaches by all kinds of valuation

standards. Ultimately, we improve our accuracy by 8.0 %.

Keywords: sentimental analysis, machine learning, CNN, RNN, encoding.

1. Introduction

Sentiment Analysis [SA) [1] has become an essential tool for many companies and organizations to

recognize people's opinions accurately. Specifically, using Machine Learning, SA helps them tell the

emotional attitude of each review - positive or negative, for example - and then prepare for their next

operation. For the government [2]. SA aids in identifying the attitudes of political opinions, so the

politicians can collect information about their support rate and make a better plan for the future; of online

shopping websites [3]. SA gives sentimental details on the product reviews, so the staff can determine

whether a product should be pulled off and then follow the current trend. SA has also been widely used

in finance [4,5], healthcare [6], education [7,8], etc. [1,9].

Due to the ever-increasing technology and life quality, people's, significantly women's, pursuit of

beauty is growing stably. Among the products for decoration, clothes have become an indispensable

part. Thus, clothing stores need to analyze consumers' comments to plan for their future products and

regulate their sales products properly. Fortunately, Natural Language Processing (NLP), which includes

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term

Memory (LSTM), can be used to help train the models for sentiment interpretation.

In this research, we try to interpret a Women’s Clothing E-Commerce dataset revolving around

customer reviews. The dataset consists of 23486 rows and ten feature variables, but only the parts about

Review Text and Rating are used in the research. In the course of the study, we used different models,

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1003

mailto:zhezhongding@163.com

optimizers, and hyper-parameters, to analyze their influences of mainly f1 score and accuracy of the

result and improve the accuracy by 9.0 %.

2. Preliminaries

This section introduces several kinds of text representation methods.

2.1. One-hot encoding
In one-hot encoding, each word w in the corpus vocabulary is given a unique integer ID (wid) between 1 and |V|,

where V is the set of the corpus vocabulary. A V-dimensional binary vector of 0s and 1s then represents each word.

This is done via a |V| dimension vector filled with all 0s barring the index, where index = wid.

2.2. Bag of N-grams

In order to capture some of the text, the bag-of-n-grams (BoN) technique divides the text into groups of

n connected words (or tokens). Each unit is referred to as an n-gram. The unique n-grams found in the

text corpus make up the corpus vocabulary, or V. Then, a vector with a length of |V| is used to represent

each document in the corpus. If |V|=0, there are no n-grams in the text. This vector displays the frequency

counts of the n-grams that are present in the article.Take the example of “The cat sat on the mat.”

For Bag of 1-gram (unigram), the sentence can be represented as [2 1 1 1 2 0], in which Unigram

Vocabulary maps for given sample corpus: {'the': 4, 'cat': 0, 'sat': 3, 'in': 2, 'hat': 1, 'with': 5}

For Bag of 2-gram (bigram), the sentence can be represented as [1 0 1 1 1 1 0], in which Bigram

Vocabulary maps for given sample corpus: {'the cat': 4, 'the cat sat': 0, 'sat in': 3, 'in the': 2, 'the hat': 5,

'cat with': 1, 'with the': 6}

For Bag of 3-gram (trigram), the sentence can be represented as [1 0 1 1 0 0 0], in which Trigram

Vocabulary maps for given sample corpus: {'the cat sat': 4, 'cat sat in': 0, 'sat in the': 3, 'in the hat': 2, 'the

cat with': 5, 'cat with the': 1, 'with the hat': 6}

Note: the bags are sequenced alphabetically

2.3. TF-IDF

According to the TF-IDF approach, a word must be extremely important to the sentence if it appears

multiple times in sentence S1 but not frequently in the other sentences Sn in the corpus. As n's frequency

in S1 increases, so should its significance (how many times that word occurs in sentence S1).

Additionally, its magnitude need to diminish in line with how often the term appears in other Sentences

Sn in the corpus. In order to calculate the TF-IDF values, two quantities—TF and IDF—are first

multiplied to provide a TF-IDF score.

A phrase or word's frequency within a certain document is measured by TF (term frequency).The

mathematical Expression of TF is shown below:

𝑇𝐹(𝑡, 𝑑) =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑)

IDF (inverse document frequency) measures the importance of the term across a corpus. In

computing TF, all times are given equal importance. However, it's a well-known fact that stop words

like is, are, am, etc., are not significant to the document despite their high frequency. IDF weighs down

the general terms across a corpus and the rare terms to account for such cases. IDF of a term t is calculated as

follows. The formula is shown below:

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔𝑒

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑡ℎ𝑒𝑚)

The TF-IDF score is a product of these two terms. Thus, TF-IDF score = TF * IDF.

Let’s consider an example.

Sentence A = “The Car is Driven on the Road.”

Sentence B = “The Truck is Driven on the highway Computation of TF-IDF.”

Scores are shown in Table 1.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1004

Table 1. The calculation process of TF-IDF value.

Word TF*IDF A TF*IDF B

The 0 0

Car 0.043 0

Truck 0 0.043

Is 0 0

Driven 0 0

In 0 0

The 0 0

Road 0.043 0

Highway 0 0.043

For TF-IDF, the biggest problem is that the feature vectors are high-dimensional representations. The

dimensionality increases with the size of the vocabulary.

3. Algorithms

3.1. CNN

Data will be analyzed in a model to make predictions based on the dataset after being tokenized and

embedded. There are many different models, and Convolutional Neural Network is one of the tools we

employ in this paper (CNN). This neural network belongs to a particular class of feed-forward neural

networks used in computer vision, recommender systems, natural language processing, etc. In this essay,

we will use CNN to perform NLP tasks.

The model consists of convolutional layers and pooling layers to a fully connected layer with some

activation functions. Convolution layers are used to extract features of a particular area of data, the

different size of the kernel used refers to the other extractors of the input data. Then the outputs of the

layers will go through pooling layers to reduce the resolution of features, which significantly decreases

the number of parameters and increase the model's robustness to noise and distortion by only taking

parts of the output data to the next layer. Our model uses max pooling to take the maximum data from

each layer's output. In the end, fully connected layers combine all the activated data streams from

pooling layers to predict people's sentiments (positive or negative).

3.2. RNN (LSTM, and BI - LSTM)

The LSTM model contains three gates: the forget gate, the input gate, and the output gate. Each gate has

a specific ability, such as storing information, omitting information, etc. By the LSTM, we can

preliminarily solve the long-term dependence problem since LSTM can forget the early lead and store

some data.

Bi - LSTM (Bidirectional LSTM), has the purpose of making the feature data obtained at time T have

context information. It has two independent LSTM models and shares the same embedding vector list.

The input list is put into two separate LSTM models in positive and negative sequence, then extract the

feature.

4. Experiment

In this section, we try optimizers, the number of epochs, learning rates, and batch sizes to find the

combination with the highest accuracy.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1005

4.1. CNN

4.1.1. Optimizer. Adam and RMSprop in Figure 1 do not show significant differences in the dataset of

women’s Clothing sentiments. However, Adam does have more converged accuracy because it’s the

combinations of RMSprop and SGD, which can effectively adapt to different neural network structures.

Figure 1. Model’s training f1 score with Adam(left) and RMSprop(right) as optimizer.

4.1.2. Epoch. For 10 epochs, f1_score is concave up (Figure 2). For 30 epochs, however, the whole

graph (Figure 3) is open down. When epoch=25，f1of the test is approximately 75%， and f1 of the

train shown in Figure 3 is about 80%±5%. Therefore, for 10 epochs, the model does not reach the

training completion state, and the fitted function is also very different from the nearly converged model

at 30 epochs. Therefore, the model used for our dataset cannot be effectively identified in 10 epochs,

but it can be effectively placed in 30 epochs.

Figure 2. The f1 score of train set(left) and test set(right) after 10.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1006

Figure 3. The f1 score of train set(left) and test set(right) after 30 epochs of training.

4.1.3. Learning rate. 0.1: The Learning rate is too large, so the step forward is too long. The

hyperparameter oscillates back and forth. Both test_f1 and test_acc shown in Figure 4 are 0, meaning

that the model cannot converge.

Figure 4. The test_f1 score(left) and the test_acc(right) with 0.1 learning rate.

0.0001: The learning rate is too low. The learning rate is too low, so the loss will not converge. Here,

the model starts to converge from the last five epochs shown in Figure 5 (left), and the convergence

speed is too slow. According to Figure 5(right), the model has not yet started to update.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1007

Figure 5. Low converge speed of training data set with 0.0001 learning rate(left); the test f1 score has

not even been updated yet.

0.001：This is the most optimal learning rate of the model. From Figure 6, the maximum f1_score can

be identified with the value of 0.75, and train_acc converges to 0.95 in 30 epochs.

Figure 6. The train set accuracy(left) and the f1 score(right) with the suitable 0.001 learning rate.

Model conclusion:

Using Adam with 0.01 learning rate and 30 epochs is the most effective way to optimize our CNN

model in this dataset.

4.2. LSTM

In our experiment in LSTM, we use 30 epochs, 64 batch size, 0.001 learning rate. These two standards

shown in Figures 7 and 8 are not an ideal number; each of them has high loss and low accuracy and

f1_score. We'll change each variable to make it perform better next.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1008

Figure 7. Standard LSTM model using parameters listed above.

Figure 8. Standard bi-LSTM model with parameters listed above.

4.2.1. Change in epoch: from 30 to 10. The change is not apparent. Comparing Figure 7 and Figure 9,

we can only see that the initial training f1_score is a little smaller than the standard in LSTM model.

Compare Figure 8 and Figure 10, the initial training f1_score is more significant than standard in bi-

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1009

LSTM model, and the change finished in epoch 1. In that case, the epoch increase can increase the speed

of change but cannot increase or decrease any value.

Figure 9. LSTM model with ten epochs.

Figure 10. Bi-LSTM model with ten epochs.

4.2.2. Change in learning rate: from 0.001 to 0.1(batch size: 64). In this part, the batch size is 64 since

we know that the bigger the batch size is, the more pronounced the results are.

Figures 11 and 12 show that the learning rate change is noticeable. Although the fluctuation is big,

we can see that the ending of each accuracy is high, with three up to around 88% and one up to 85%-

86%. However, the line between training accuracy and testing accuracy in Figures 11 and 12 is not a

constant, which means that the higher the learning rate, the less stable accuracy. Also, in each figure,

we can see that f1_score have a slight fluctuation at epoch 10 and 19 in figure 11 represent LSTM model,

and epoch 9 and 18 in figure 12, representing bi-LSTM model. These fluctuations follow the training

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1010

accuracy, according to f1_scores formula. According to the results, the increasing learning rate can raise

the accuracy but increase the change.

Figure 11. LSTM model with 0.1 learning rate.

Figure 12. Bi-LSTM model with 0.1 learning rate.

Model conclusion:

Now, we already know that the increase of epoch can increase the speed of changing; the smaller the

batch size is, the faster the speed is, and the increasing learning rate can raise the accuracy but increase

the fluctuation. Thus, we choose to use 50 epochs and a 0.01 learning rate to get a successful graph of

this dataset. Each model improves the accuracy and reduces the loss. In our advanced LSTM model and

bi-LSTM model, the highest accuracy is up from 82.0% to 91.0%.

5. Conclusion

In this paper, we mainly introduce the different methods for text representation, use other methods to

analyze the given dataset, and try to improve the accuracy. Firstly, we briefly introduce the current

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1011

development in NLP and clarify our purposes for writing the paper. Then, we present four methods for

embedding: One-hot encoding, Bags of N-grams, TF-IDF, and Word2Vec. Besides, we explain the

algorithms of CNN and RNN (including LSTM and BI-LSTM). We also try three optimizers (Adam,

RMSProp, SGD), three different epochs (10,25,30), and three kinds of learning rates (0.01, 0.001,

0.0001) in CNN, thus increasing the accuracy by 5.0%. Similarly, we also try two different epochs

(10,30) and two learning rates (0.01, 0.001) in LSTM and BI-LSTM, thus increasing the accuracy by

9.0%.

Acknowledgment

Ding Zhezhong*: Conceptualization; model evaluation - CNN; writing - review, and editing.

Du Zhuoheng*: Methodology in text representation; writing- original draft preparation; typography.

Yang Qingqi*: Conceptualization; model evaluation - LSTM & BI - LSTM.

All authors contributed equally to this work and should be considered co-first authors.

References

[1] Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment analysis based on deep

learning: A comparative study. Electronics, 9(3), 483.

[2] Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., ... &

Belyaeva, J. (2013). Sentiment analysis in the news. arXiv preprint arXiv:1309.6202.

[3] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. J. (2011, June). Sentiment

analysis of twitter data. In Proceedings of the workshop on language in social media (LSM

2011) (pp. 30-38).

[4] Mouthami, K., Devi, K. N., & Bhaskaran, V. M. (2013, February). Sentiment analysis and

classification based on textual reviews. In 2013 international conference on Information

communication and embedded systems (ICICES) (pp. 271-276). IEEE.

[5] Thet, T. T., Na, J. C., & Khoo, C. S. (2010). Aspect-based sentiment analysis of movie reviews

on discussion boards. Journal of information science, 36(6), 823-848.

[6] Mite-Baidal, K., Delgado-Vera, C., Solís-Avilés, E., Espinoza, A. H., Ortiz-Zambrano, J., &

Varela-Tapia, E. (2018, November). Sentiment analysis in education domain: A systematic

literature review. In International conference on technologies and innovation (pp. 285-297).

Springer, Cham.

[7] Zhou, J., & Ye, J. M. (2020). Sentiment analysis in education research: a review of journal

publications. Interactive learning environments, 1-13.

[8] Çoban, Ö., Özyer, B., & Özyer, G. T. (2015, May). Sentiment analysis for Turkish Twitter feeds.

In 2015 23nd Signal Processing and Communications Applications Conference (SIU) (pp.

2388-2391). IEEE.

[9] Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., ... &

Belyaeva, J. (2013). Sentiment analysis in the news. arXiv preprint arXiv:1309.6202.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230830

1012

