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Abstract. Modern techniques for employing deep learning for sound event identification (SED) 

challenges have improved significantly. In this paper, the author discusses the development of 

deep learning models for SED tasks in recent years; and the performance advantages and 

disadvantages shown by using different deep learning methods for the same sound event dataset. 

This paper also introduces a few techniques effectively increase the precision of sound detection 

and possible development trends of SED task methods by analyzing the entries in the 2016-2017 

Acoustic Scene and Event Detection and Classification (DCASE) Challenge. Through analysis, 

this paper finds that the accuracy of the deep learning model used for SED to identify target 

events will continue to improve to be suitable for industrial and life scenarios, so this is still a 

valuable research. 
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1.  Introduction 

As human beings, we have become accustomed to recognizing the sounds around us. In a corner of the 

city, we can hear the sounds of car horns, noisy people talking and laughing, rain, wind, and birdsong. 

We can tell the type of sound immediately without thinking about it. However, this is the result of 

"training" through long exposure to a variety of sounds and associating them with their sources. The 

application of this property to machines to replace humans in many repetitive tasks is very promising 

research. 

Sound Event Detection (SED) aims to enable machines to classify events based on their audible 

characteristics. Compared with the familiar speech recognition, sound event detection is more difficult. 

This is mainly reflected in two aspects: there are more types of events than syllables; and events overlap 

each other at the same time, which does not happen in the syllables of speech recognition. 

In the home, cameras and other smart home devices can be adapted to this function. After the 

microphone receives and recognizes the sound signal such as "baby crying", "broken window", "door 

opening", it can send an alarm and alert the family members working outside in the terminal app. family 

members who are working outside. In industry, many equipment’ and devices’ fault detection can also 

be done with acoustic event detection. The cost of investment in human resources will be significantly 

reduced, and the reliability of the models trained on data sets will exceed that of human detection. 
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Compared to image-based event detection, SED requires a relatively small amount of data to process, 

requiring less memory space and computational resources. And the conditions for sound data collection 

are not as stringent as those for image video, as long as there is a medium to propagate sound, without 

worrying about darkness or being obscured by opaque objects. However, when collecting audio, SED 

still needs a lot of improvement due to complex background noise, target event overlap, and other 

problems. The purpose of this paper is to analyze the popular SED methods in recent years, discuss the 

improved models in terms of performance enhancement, provide relevant literature for scholars who 

study in depth in this field, and discuss the future development trend of SED. 

2.  Overview of development 

In recent years, sound event detection has developed rapidly, with many papers and research outputs. 

Early SEDs mainly adopted traditional machine learning models based on Hidden Markov Models 

(HMM), etc. And then, as the application of deep learning gradually became widespread, SED also 

started to adopt deep learning models; deep neural networks (DNNs) greatly outperformed HMM 

models in terms of accuracy. However, since DNNs take vector form input, they cannot model time and 

are unsuitable for displaying time-series input, including video, audio, or text. Therefore, convolutional 

neural networks (CNNs) featuring acoustic spectrogram images and recurrent neural networks (RNNs) 

emerged and performed well in the SED task. Nowadays, neural networks for SED are still being 

updated and iterated, and many fusion neural networks have emerged, that is convolutional recurrent 

neural networks (CRNNs), LSTMs (Long-Short Term Memory Models) that solve the gradient problem 

arising from RNNs, and a variant of LSTMs with a simpler structure (gated recurrent units), GRUs. 

3.  Different models 

3.1.  HMM 

Initially, sound event detection was mainly based on HMM models [1], [2], [3]. The statistical model 

called the Hidden Markov Model (HMM) is applied to depict a Markov process, which is also called 

Markov chain, with implicit unknown parameters. The state distribution at instant (t-1) and the transfer 

probability distribution can be utilized to calculate the state distribution of the Markov chain at instant 

t. The challenge is in identifying the process' inferred parameters from the visible parameters and 

applying them for further analysis. 

HMM models can be used for general sequence-based (time series, state series, etc.) problems, or 

problems containing two types of data (observation series, state series). For example, speech recognition, 

sound event detection, etc. 

3.2.  DNN 

With the advancement of deep learning, deep neural network architectures (DNNs) are gradually being 

widely used in SED tasks [4] and have shown significant improvements in accuracy compared to 

previous methods. 

Neural networks (NNs), an outgrowth of perceptual machines, are an algorithmic mathematical 

model that imitates the behavioral traits of human neural networks for parallel and distributed 

information processing. A neural network is made up of several layers, each of which is made up of 

numerous interconnected neurons with activation functions. Each activation function consists of inputs 

multiplied by connection weights, which are then computed using a mathematical formula to calculate 

the level of activation of the individual neurons. By altering the connections between a vast number of 

internal nodes connected to one another, the received information is processed throughout this manner. 

Having two or more hidden layers makes a neural network a deep neural network (DNN), and the 

internal layers of a DNN can be divided into input, hidden, and output layers. 
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Figure 1. DNN internal structure 

All the intermediate ones are hidden layers, with the input layer being the first and the output layer being 

the final, with full connectivity between different layers (neurons of two adjacent layers are completely 

connected in pairs). Backpropagation algorithm is used when training the neural network to improve 

performance of network by changing the weights. 

3.3.  CNN 

The application of neural networks has dramatically improved the accuracy of sound event detection, 

but it still has shortcomings in handling Spatio-Temporal structured data in the form of text, audio, and 

picture. Deep neural networks have many parameters and grow quickly during training. They are also 

completely coupled between layers, leading to parameter inflation and very slow learning of spatial and 

event-structured data. 

Convolutional neural networks (CNNs) were then gradually applied [5], [6], [7], which to some 

extent overcome the deficiencies of neural networks in processing spatially structured data. CNNs are 

built based on human visual cortex processing and consist of pooling, convolutional, and fully connected 

layers. 

The process of convolution is like the process of picture recognition by the human brain, instead of 

recognizing the whole picture at the same time, each feature is first "locally perceived", which greatly 

reduces the computational parameters of the model. A convolution kernel is a window filter, and a 

custom-sized convolution kernel is used as a sliding window to convolve the input data during the 

network training process. Then, through the "weight sharing" mechanism, Additionally, the total number 

of network parameters is decreased, improving the computational effectiveness. 

The operation in the pooling layer is mainly feature dimensionality reduction, which is generally 

used after each convolutional layer to enhance the model's fault tolerance by decreasing overfitting, and 

compressing the quantity of data points and parameters. Maximum pooling and average pooling are two 

frequently employed techniques. 

After those two layers, the fully connected layer serves as the final layer of the network, and its main 

role is to fully connect the data array and then output the data according to the classification. 

3.4.  RNN 

Recurrent Neural Networks (RNN) are very effective for data with sequential properties and can be 

extended to longer sequences. 

DNNs and CNNs have fixed input and output lengths, and the length of audio, e.g., utterances is 

usually not fixed, so they are inefficient. The structure of a simple RNN is very similar to that of an 

ordinary fully connected neural network. In contrast, an RNN's hidden layer value depends not only on 

the input being utilized at the time but also on the value of the previous hidden layer, which serves as 

the input's weight. It can remember the properties of the information at each moment, allowing it to 

solve sequential problems. 
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Figure 2. RNN internal structure 

3.5.  LSTM 

However, when a sequence is too long, the RNN loses the beginning information at the end, so the 

standard RNN structure stores a limited range of contextual information, which is the gradient 

disappearance problem. To address this issue the Long Short-Term Memory (LSTM) was created to 

control the transmission of sequence information using forgetting gates, input gates, and output gates, 

so that a larger range of contextual information can be stored and transmitted. 

3.6.  GRU 

The Gated Recursive Unit (GRU) is a version of the LSTM with a simpler structure, which consist of 

three gates (forgetting, input, and output gate), whereas the GRU merges the forgetting gate and input 

gate into a single update gate. This results in a few matrix multiplications, and GRU saves a lot of time 

in the case of large training data. 

4.  Evaluation 

The SED evaluation criteria of the proposed article rely mainly on the DCASE 2016-2017 Challenge 

[8]. It is based on two metrics. 

The first metric is the F-score, according to statistics: true positives (TP), false positives (FP), and 

false negatives (FN) 

 P =
TP

TP+FP
, R =

TP

TP+FN
, F =

2PR

P+R
 (1) 

The other is the error rate, which is measured by the number of insertion (I), deletion (D) and substitution 

(S) errors. 

 ER =
∑ S(k)+∑ D(k)K

K=1 +∑ I(k)K
K=1

K
K=1

∑ N(k)K
K=1

 (2) 

4.1.  HMM 

Prof. Annamaria Mesaros et al. used the HMM model [3] to model sound events and performed a 

performance analysis of event recognition with a dataset. 

The database for the experiments was a set of independent sound effects selected from the 

Stockmusic online sample database and organized into 61 classes; 70% of these samples formed the 

training set and 30% the test set. After comparison, using a three-state HMM model the left to the right, 

will provide a detection accuracy of 30% for 61 classes of events and a detection error of 84.1%. 

4.2.  DNN 

The authors suggested a multi-label feedforward DNN based approach for multi-sound acoustic time 

detection [4]. 

They extend the use of DNNs to actual, everyday contexts by encoding the issue as a multi-label 

learning job with no upper limit on the number of concurrent times and modeling overlapping audio 

events naturally. MFCCs, mel-energy band energies, and log-mel energy band energies were the three 
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features this author team utilized. The same dataset as the HMM [3] above was utilized to evaluate the 

model with an overall accuracy of 63.8%, which is a 19% overall improvement in accuracy compared 

to the HMM as a classifier approach. 

Brake sounds, children, heavy vehicles, people walking, people chatting, and cars are among the six 

annotated sound event classes included in the TUT Sound events 2017 evaluation dataset, which is a 

roadside recording. 

4.3.  CNN 

Joeng et al. suggested a CNN architecture using two input datasets [5], i.e., short and long term data. 

The proposed optimization techniques include class-wise early-stopping and frequent validation 

utilizing adaptive thresholding. The performance is significantly better than the benchmark system. The 

results of DCASE 2017 task 3 show an ER score of 0.8080 and an F-score of 40.8%. 

4.4.  RNN 

For solving SED tasks using RNNs, [9], [10], [12] have provided strong studies. 

Throughout the DCASE2017 challenge, many scholars who adopt RNN models are built using GRU 

or LSTM Model architectures. For example, in [10], the authors' team found that mfcc features always 

outperformed lms features to a large extent, and bidirectional GRU models always performed better than 

bidirectional LSTM models after comparison. In [11], the authors' team proposed a multichannel event 

detection system taking us of log mel-band energy features and LSTM. The overall performance on the 

DCASE 2017 task3 dataset is excellent. 

4.5.  CRNN 

The SED task deals with sequential data containing time. The RNN performs well in the time domain 

of audio, while the CNN applies a linear convolutional filter in the frequency domain. By combining 

the two, the convolutional recurrent neural network CRNN is obtained. 

As seen in the report submitted in DCASE 2017 task 3, the CRNN [11] model outperforms models 

such as either CNN or RNN. 

4.6.  A-CRNN 

And based on this model of CRNN, Adaptive CRNN (A-CRNN) [13] was proposed by another team as 

an unsupervised adversarial domain adaptive model for SED. The authors extended the dataset from 

DCASE 2017 Task 3 and the team recorded their own dataset in Singapore, an Asian country, in order 

to ensure source diversity. The source domain's only labeled data were used to train the CRNN. A-

CRNN, on the other hand, is trained utilizing data from the labeled source domain and the unlabeled 

target domain using a normal CRNN model. 

According to the experimental findings, the A-CRNN model performs much better on the target 

domain than the normal CRNN model, with just a minor performance degradation on the source domain. 

4.7.  MWK-CRNN 

A new CRNN model with a number of parallel convolutions with various kernel widths and an expanded 

feature representation built on a log-Meier spectral map was recently proposed by Jan Baumann et al. 

Table 1. Performance of each model submitted in DCASE 2017 Task3 based on TUT Sound 

Events 2017 Evaluation Dataset [5],[9],[10],[11] 

Models F-score Error rate 

CNN [5] 40.8 0.808 

RNN [9] 37.3 0.852 

RNN [10] 39.6 0.825 

CNN-RNN [11] 41.7 0.791 
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[14]. New benchmark results were achieved on the DCASE 2017 Rare SED dataset, surpassing the 

highest scoring DCASE challenge network to date. 

 

Figure 3. A diagram of the suggested MWK-CRNN topology for a specific sound event class [14] 

With the initial DCASE 2017 Rare SED training and testing configuration, the dataset was utilized. The 

authors' team re-simulated the baseline DCASE 2017 SED and the ranking first 1D-CRNN [15] and the 

second-ranked SED-CRNN [16]. In comparison to the first and second-ranked DCASE 2017 methods, 

MWK- CRNN's average error rate on the test set was 24.80%, or 6.13% higher. while obtaining an F-

score of 86.37%, 4.39% higher than the reference score. 

5.  Prospect 

Although the methods for SED tasks have evolved rapidly over the years [17]. In particular, deep 

learning line models are constantly updated to fit different sound event scenarios. However, the error 

rate of accurately identifying target events in a polyphony segment is still high and it is difficult to apply 

in industrial scenarios. Changing the way of acoustic feature extraction in the preprocessing stage of the 

acoustic signal, continuously improving the deep learning model such as using CNN-GRU on SED, or 

selecting suitable audio as the training set can effectively improve the recognition accuracy. Therefore, 

various methods for SED tasks will continue to develop and have long-term significance for industrial 

development and technological progress. 

6.  Conclusion 
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In this paper, we examine the application of deep learning or machine learning techniques to the problem 

of sound detection. Innovative SED works using deep learning approaches are presented mainly for the 

different performances of various models in SED tasks. And we make a vision on the future development 

prospects of deep learning. There are some limitations in this paper because there is no systematic 

experimental validation for each model. The authors have used and tested some deep learning models 

in some practical application scenarios, and expect more detailed research reports in the future. 
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